ANNUAL WATER OUALITY REPORT

Reporting Year 2022

Our Mission Continues

We are once again pleased to present our annual water quality report covering all testing performed between January 1 and December 31, 2022. Over the years, we have dedicated ourselves to producing drinking water that meets all state and federal standards. We continually strive to adopt new methods for delivering the best-quality drinking water to you. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education while continuing to serve the needs of all our water users. Please remember that we are always available should you ever have any questions or concerns about your water.

Where Does My Water Come From?

The Town of Plymouth's municipal water supply consists of two aquifers and 13 gravel-packed wells at 11 locations throughout the town. The Plymouth Water Division spends over \$75,000 annually on testing to ensure water quality. We continue our

mission to provide the highestquality drinking water and fire protection at the lowest possible cost to the ratepayers. The Plymouth water system serves the entire northern section of town between Federal Furnace Road and the Kingston and

Carver boundaries, Plymouth Center, Chiltonville, Manomet, and Cedarville areas east of Route 3 South to the Bourne town line.

Thousands have lived without love, not one without water."

-W.H. Auden

Source Water Assessment

A Source Water Assessment Plan (SWAP) is now available at our office. This plan is an assessment of the delineated area around our listed sources through which contaminants, if present, could migrate and reach

our source water.

It also includes an inventory of potential sources of contamination within the delineated area and a determination of the water supply's susceptibility to contamination by the identified potential sources. According to the SWAP, our water system had a susceptibility rating of high. If you would

like to review the SWAP, please feel free to contact our office during regular office hours.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/hotline.

Water Treatment Process

roundwater is naturally corrosive, so we add sodium hydroxide to adjust the pH to 8.5. Chlorine is added as a precaution against any bacteria that may be present. (We carefully monitor the amount of chlorine, adding the lowest quantity necessary to protect the safety of your water without compromising taste.) Finally, water from some wells gets a phosphate blend for iron and manganese sequestering before being pumped to water storage tanks and into your home or business.

OUESTIONS?

For more information about this report, or for any questions relating to your drinking water, please call Peter Gordon, Plymouth DPW, Water Division Superintendent, at (508) 830-4162, ext. 12141.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the Department of Environmental Protection (DEP) and the U.S. Environmental Protection Agency (U.S. EPA) prescribe regulations limiting the amount of certain contaminants in water provided by public water systems. The Food and Drug Administration (FDA) and Massachusetts Department of Public Health (DPH) regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material and can pick up substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and which may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Count on Us

Delivering high-quality drinking water to our customers involves far more than just pushing water through pipes. Water treatment is a complex, time-consuming process. Because tap water is highly regulated by state and federal laws, water treatment plant and system operators must be licensed and are required to commit to long-term, on-the-job training before becoming fully qualified. Our licensed water professionals have a basic understanding of a wide range of subjects, including mathematics, biology, chemistry, and physics. Some of the tasks they complete on a regular basis include:

- Operating and maintaining equipment to purify and clarify water.
- Monitoring and inspecting machinery, meters, gauges, and operating conditions.
- Conducting tests and inspections on water and evaluating the results.
- Maintaining optimal water chemistry.
- Applying data to formulas that determine treatment requirements, flow levels, and concentration levels.
- Documenting and reporting test results and system operations to regulatory agencies.
- Serving our community through customer support, education, and outreach.

So the next time you turn on your faucet, think of the skilled professionals who stand behind each drop.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/safewater/lead.

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule. The water we deliver must meet specific health standards. Here, we only show those substances that were detected in our water (a complete list of all our analytical results is available upon request). Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum allowed levels.

The state recommends monitoring for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

REGULATED SUBSTANCES							
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Chlorine (ppm)	2022	[4.0]	[4.0]	1.08	0.02-1.08	No	Water additive used to control microbes
HAA5 (ppb)	2022	60	NA	2.54	ND-2.54	No	By-product of drinking water disinfection
Nitrate (ppm)	2022	10	10	2.21	0.05–2.21	No	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits
Tetrachloroethylene (ppb)	2022	5	0	1.69	ND-1.69	No	Discharge from factories and dry cleaners
TTHMs [total trihalomethanes]–Stage 2 (ppb)	2022	80	NA	24.71	2.29–24.71	No	By-product of drinking water disinfection

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	MCLG	AMOUNT DETECTED (90TH %ILE)	SITES ABOVE AL/TOTAL SITES	VIOLATION	TYPICAL SOURCE
Lead (ppb)	2022	15	0	4.4	2/66	No	Lead service lines; Corrosion of household plumbing systems, including fittings and fixtures; Erosion of natural deposits

UNREGULATED SUBSTANCES²

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE
Bromodichloromethane (ppb)	2022	1.47	ND-1.47	Trihalomethane, by-product of drinking water chlorination
Bromoform (ppb)	2022	5.07	ND-5.07	Trihalomethane, by-product of drinking water chlorination
Chlorodibromomethane (ppb)	2022	3.18	ND-3.18	NA
Chloroform (ppb)	2022	1.62	ND-1.62	By-product of drinking water disinfection

¹ Manganese is a naturally occurring mineral found in rocks, soil, groundwater, and surface water. Manganese is necessary for proper nutrition and part of a healthy diet, but it can have undesirable effects on certain sensitive populations at elevated concentrations. U.S. EPA and DEP have established public health advisory levels for manganese to protect against concerns of potential neurological effects.

Definitions

90th %ile: Out of every 10 homes sampled, 9 were at or below this level. This number is compared to the Action Level to determine lead and copper compliance.

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

SMCL (Secondary Maximum Contaminant Level): These standards are developed to protect aesthetic qualities of drinking water and are not health based.

²Unregulated contaminants are those for which the U.S. EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist U.S. EPA in determining their occurrence in drinking water and whether future regulation is warranted.

What Causes the Pink Stain on Bathroom Fixtures?

The reddish-pink color frequently noted in bath-rooms on shower stalls, tubs, tile, toilets, sinks, and toothbrush holders and on pets' water bowls is caused by the growth of the bacterium Serratia marcescens. Serratia is commonly isolated from soil, water, plants, insects, and vertebrates (including humans). The bacteria can be introduced into the house through any of the abovementioned sources. The bathroom provides a perfect environment (moist and warm) for bacteria to

The best solution to this problem is to clean and dry these surfaces to keep them free from bacteria. Chlorine-based compounds work best, but keep in mind that abrasive cleaners may scratch fixtures, making them more susceptible to bacterial growth. Chlorine bleach can be used periodically to

disinfect the toilet and help eliminate the occurrence of the pink residue. Keeping bathtubs and sinks wiped down using a solution that contains chlorine will also help to minimize its occurrence. Serratia will not survive in chlorinated drinking water.

Table Talk

Get the most out of the Testing Results data table with this simple suggestion. In less than a minute, you will know all there is to know about your water:

For each substance listed, compare the value in the Amount Detected column against the value in the MCL (or AL, SMCL) column. If the Amount Detected value is smaller, your water meets the health and safety standards set for the substance.

Other Table Information Worth Noting

Verify that there were no violations of the state and/or federal standards in the Violation column. If there was a violation, you will see a detailed description of the event in this report.

If there is an ND or a less-than symbol (<), that means that the substance was not detected (i.e., below the detectable limits of the testing equipment).

The Range column displays the lowest and highest sample readings. If there is an NA showing, that means only a single sample was taken to test for the substance (assuming there is a reported value in the Amount Detected column).

If there is sufficient evidence to indicate from where the substance originates, it will be listed under Typical Source.

How Long Can I Store Drinking Water?

The disinfectant in drinking water will eventually dissipate even in a closed container. If that container housed bacteria prior to filling up with the tap water the bacteria may continue to grow once the disinfectant has dissipated. Some experts believe that water could be stored up to six months before needing to be replaced. Refrigeration will help slow the bacterial growth.

What's a Cross-Connection?

Cross-connections that contaminate drinking water distribution lines are a major concern. A cross-connection is formed at any point where a drinking water line connects to equipment (boilers), systems containing chemicals (air conditioning systems, fire sprinkler systems, irrigation systems), or water sources of questionable quality. Cross-connection contamination can occur when the pressure in the equipment or system is greater than the pressure inside the drinking water line (backpressure). Contamination can also occur when the pressure in

the drinking water line drops due to fairly routine occurrences (main breaks, heavy water demand), causing contaminants to be sucked out from the equipment and into the drinking water line (backsiphonage).

Outside water taps and garden hoses tend to be the most common sources of cross-connection contamination at home. The garden hose creates a hazard when submerged in a swimming pool or attached to a chemical sprayer for weed killing. Garden hoses that are left lying on the ground may be contaminated by fertilizers, cesspools, or garden chemicals. Improperly installed valves in your toilet could also be a source of cross-connection contamination.

Community water supplies are continuously jeopardized by cross-connections unless appropriate valves, known as backflow prevention devices, are installed and maintained. We have surveyed industrial, commercial, and institutional facilities in the service area to make sure that potential cross-connections are identified and eliminated or protected by a backflow preventer. We also inspect and test backflow preventers to make sure that they provide maximum protection. For more information on backflow prevention, contact the Safe Drinking Water Hotline at (800) 426-4791.